Principal Components Transformation
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· Introduction

With the development of Geographical Information System (GIS) and remote sensing techniques, a great deal of data has provided a set of continuous samples of the earth surface from local, regional to global scales. The use of a series of images in place of the use of one or very few images has become the current trend in remote sensing. Multispectral images and hyperspectral datasets containing hundreds of bands (e.g. MODIS) need huge storage. For example, Thematic Mapper (TM) images need 150 Mbytes (Tintrup et. al. 1998). Usually in remotely sensed multispectral images there is a large amount of interband correlation due to a combination of factors such as natural spectral correlation, topographic slope and aspect, and overlap of spectral bands (Schowengerdt, 1997, Singh, 1993). In addition, the current availability of relatively long time series (multitemporal) remote sensing data has been utilized to characterize land-cover and map change (Hirosawa, et. al. 1996). For example, now a long time series of Normalized Difference Vegetation Index (NDVI) data are available from NOAA/AVHRR which have now collected daily observation for the whole earth surface. Ten days’ global NDVI data at spatial resolution of 8km since 1982 are available from the International Program at USGS/EROS Data Center. Ten days’ NDVI data were generated by using the maximum value composite procedure, which selects the maximum NDVI value within a period of ten days for each pixel (Li, Lewis & Rowland, 1999). These data can be used in long time series analysis for studying historical changes in land cover. Meanwhile, the data from the Landsat series of satellites are also available since 1972 for the major portion of the earth’s surface. 

All in all, a large amount of data from multispectral to hyperspectral, and one day to long time series are available. Apart from the difficulties in dealing with the large amounts of data, the more important issue is to utilize some methods for the analysis and interpretation of the data. Moreover the wide use of these images for displaying, analyzing over multispectral/multitemporal bands, classification, and storing need efficient methods to reduce the redundant information. The principal components transformation which produces the principal components of the images provides an effective method for analyzing these images.

The principal components transform (PCT) is a multivariate statistical technique closely related to Factor Analysis in which a set of images may be transformed into a new set such that the resulant images are uncorrelated and ordered in the degree of variance explained from the original set (Eastman and Fulk, 1993). The technique consists of choosing uncorrelated linear combinations of the variables in such a way that each successively extracted linear combination, called a principal component, accounts for smaller portion of the variance. If the variables have significant linear intercorrelations, the first few components will account for a large part of the total variance. If the low variance (low contrast) information in the higher order components can be ignored, significant savings in data storage, transmission and processing time can result. Also any correlated noise in the original image will usually appear only in the higher order components and can therefore be removed by setting those images to a constant value. 

With unstandardized PCT, the principal components are calculated using the covariance matrix. Those calculated using the correlation matrix are referred as standardized principal components.

Principal components transformation dates back to Karl Pearson in 1901, although the general procedure as we know it today had to wait for Harold Hotelling whose pioneer work in educational psychology appeared in 1933 (Jackson, 1991). Hence, principal components transformation is also called Hotelling transformation. Widespread development and application of principal components transformation techniques was delayed due to the unavailability of the high-speed electronic computer. In 1965, Watanabe introduced the principal components transformation to pattern recognition. Since then it has been developed in two directions. In the statistical literature interest has been in the area of sampling theory and inference procedures (Kendall et al. 1983), whereas in pattern recognition the main concern has been with feature extraction methods such as information compressibility (Devijver et al. 1982). In remote sensing, the technique was first developed by A. Santisteban (1978) for his research work in geology using multispectral image. Principal components transformation has been successfully employed in remote sensing for data-compression, change detection and image data transformation (Hirosaua, 1996). PCT has proven to be particularly effective in detecting and monitoring temporal change when it is applied to both short and long time series image (Eastman and Fulk, 93).
There is no algorithm for performing the principal components transformation and this is a serious disadvantage because of huge computation involved (Singh and Harrison, 1985, Gonzalez and Wintz 1977).

· Principal Components Transform (PCT)
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The multispctral/multitemporal remote sensing image data can be represented as a vector space with as many dimensions as there are spectral/temporal components associated with each pixel (Richard and Jia, 1999). For example, the Landsat TM data will have seven dimensions whereas NOAA/AVHRR data has 5 dimensions. For ten days’ NDVI data in one year, it has 36 dimensions. Each pixel in one image is thought as a point in the multispectral/multitemporal vector space with coordinates that correspond to the brightness values of the pixels in the appropriate spectral/temporal components. 
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1. Mathematical description of PCT in Remote Sensing

Considering the N-dimensional spectral/temporal space, XT=[X1,…,XN], the pixel in the remotely sensed image (image size is col*row) is defined as a vector x in X. Figure 1 shows two-dimensional distribution of a group of pixel values obtained in two spectral bands, which is simply labeled as X1 and X2.  The principal components transformation is used to translate and/or rotate the original axes so that the original brightness values on axes X1 and X2 are redistributed onto a new set of axes or dimensions, Y1 and Y2 which forms a new spectral vector space (shown in figure 2). In this new space, the data can be represented without correlation. It means that the covariance matrix of the data in the new space is diagonal. This procedure can be finished by using a linear transformation which is derived from the covariance matrix Cx of X. Hence the Y can be calculated by

Y=AX …………(1)
where A is the orthogonal matrix of eigenvectors which diagonalizes the covariance Cx of X, such that the covariance matrix Cy of the data in Y is diagonal.
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The mean vector Mx of X can be computed by the equation:

where xk are the individual pixel vectors, and L equals to col*row which is the total pixel number in one image.

Therefore, the covariance matrix Cx of X is given by

Cx =E{(X- Mx)(X- Mx)T}……(3)
Where E is the expectation operator and T denotes vector transpose. The size of matrix C is N*N. 

Similarly, the mean vector of Y, My, is defined by,

                                        My =E(Y)=E(AX)=A(E(X)=AMx … … (4)
Therefore, the Cy of Y is,

                                       Cy =E{(Y- My)(Y- My)T}

                                           =E{(AX-AMx)(AX-AMx)T}

                                           =E{A(X-Mx)(X-Mx)T AT }

             =AE{(X-Mx)(X-Mx)T } AT=A Cx AT … … (5)
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Since A, by demand, is orthogonal egienvector matrix of Cx, the Cy is the diagonal matrix whose diagonal elements are the eigenvalues (i (i=1, 2, …, N) of Cx. The Cy can be also written,

Where (1 >(2 > … >(N.
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The percent of total variance is explained by each of the principal components, %Vari using the formula (Jensen, 1996)
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Each principal component Yi is calculated as (Fung and LeDrew, 1987):

Where aiT is the transpose of the normalized eigenvectors of the covariance matrix Cx of X. 
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But what do these new components mean? In answering it, a new, the other important statistic concept called ‘loadings’ is introduced. The loadings describes how each band is associated with each principal component by computing the correlation of each band k with each component p (Jensen, 1997). The equation (Jensen, 1997) is

where 

aki: eigenvector for band k and component I

(i :  ith eigenvalue

Vark: variance of bank k in the covariance matrix Cx.

This is principal components transformation which is also known as the Karhunen-Loeve or Hotelling transform. 

The inverse principal components transformation can be expressed by,

X=ATY……(10)
The principal components transformation has several properties (Singh and Harrison, 1985):

1. It is a rotation of the highly correlated coefficients in N-dimensions to a more favourable orientation in the feature space, orthogonal to each other, such that the maximum amount of variance is accounted for in decreasing magnitude along the ordered components. The first component contains the maximum possible variance of original images if the original images have significant intercorrelations. 

2. It preserves the total variances in the original images. The sum of all the eigenvalues equals to the sum of all the variances of original images. If the low variance (low constrast) information in the higher order components can be ignored, significant savings in data storage, transmission and processing time can result. In addition, any uncorrelated noise in the original image will usually appear only in the higher order components, and can therefore be removed by setting those PC images to a constant value. However, because small, but significant band differences may also appear only in the higher order components (Schowengerdt, 1997).
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In the question, the covariance matrices have been done by Group A and Group B. The correlation matrices, directly derived from the covariance matrices, is,

The covariance matrix of Group A is taken as an example to show the calculation procedure of principal components transfromation.

First step is to calculate the eigenvalues of Cx by virtue of the equation,

| Cx -(I|=0 ……(13)
where I is identity matrix.
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For covariance matrix of Group A,  we have,

which yields (=10.2636 and 1.2364.
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Therefore the covariance matrix C of Y is expressed

(1+(2=10.2636+1.2364=10.5
Using equation 7, the first principal component (eigenvalue (1) occupied 89.2% of the variance in the entire multispectral image data, whereas the second principal component (eigenvalue (2) only accounts for 10.8% of the remaining variance. From the covariance matrix, the total variance ( = 5.4+6.1 = 10.5 (the diagonal elements in covariance matrix represent the variance of each spectral band) which equals to the sum of eigenvalues ((1+(2). This also proves that PCT preserves the total variances in the original images.
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And the egienvectors matrix of C is calculated as:

Since Y=AX, the first principal component is computed by
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The second principal component is

In a similar procedure, the eigenvalues, eigenvector and component percent variance for Group B is obtained.

The eigenvalues: (1=29.361 and (2=15.039, (1+(2=44.4 which equals to the total variance of original images.

The first principal component accounts for 66.1% of the total variance in the original images whereas the second component accounts for 33.9% of the total variance.

[image: image15.jpg]


The eigenvectors matrix of the covariance matrix is

Let us go back to the question, research group A and B both wanted to reduce the number of features required to represent image data using principal components transformation. If the information content can be directly related to the variance, the above results showed that 10.8% information is discarded in research Group A and 33.9% information is discarded in research Group B if only the first principal component is retained by both groups. That is reason why Group A described very good results that they had obtained with the method whereas Group B indicated they felt it was of little use. Why did they get different result using the same technique? From above correlation matrices, we found that the two spectral bands used by Group A have high correlation with coefficients 0.784 whereas the two spectral bands used by Group B have low correlation with 0.195. The results show that the first component accounts for a large part of the total variance of the original spectral images if the spectral bands have significant intercorrelations. Therefore, the principal components transformation is suitable for removing the redundant information in the highly correlated spectral/temporal images. The result of research Group B indicated that this technique won’t work on the spectral images without correlation. Research Group A can use the first component to represent the original two spectral images. 

2. Standardized principal components transformation

Some researchers have shown that significant improvement in Signal to Noise Ratio (SNR) and image enhancement using principal components transformation performed on correlation matrix in place of covariance matrix (Singh & Harrison, 1985). This transformation related to correlation matrix is referred as standardized principal components transformation. In using the correlation matrix, the each original band is normalized to have equal weight and have unit variance (Schowengerdt, 1997). And also Eastman (1992) and Fung and LeDrew (1987) found that standardized PCA was more effective than unstandardized principal components transformation (using covariance matrix) in the analysis of change in multi-temporal image data sets. Of course, “the standardized principal components transformation does not present the optimum compression characteristics of the principal components transformation” (Schowengerdt, 1997).

3. Practical example for principal components transformation

The above material gave a more detailed mathematical description for principal components transformation. However, the user is not involved in this level of detail (Richard and Jia, 1999) in practical application. Most remote sensing programs such as IDRISI, PCI, ERDAS and ErMapper provide such function.

In conclusion, there are three steps in the entire principal components transformation:

1. Calculation of the variance-covariance using input image data sets.

2. Computation of the eigenvalues and eigenvectors.

3. Linear transformation of the image data sets. 
The Sierra de Gredos TM scene (tutorial dataset of IDRISI software) is used to show how principal components transformation work on a correlated set of multispectral data. Figure 3 shows bands 1, 2, 3, 5, and 7 which are highly correlated. Table 1 shows the covariance matrix and Table 2 shows the correlation matrix for this image.

                     Table 1 the covariance matrix


TM1
TM2
TM3
TM5
TM7

TM1
65.45
43.62
71.58
173.33
104.86

TM2
43.62
32.17
51.06
119.2
71.99

TM3
71.58
51.06
86.87
207.07
125.02

TM5
173.33
119.2
207.07
649.99
356.57

TM7
104.86
71.99
125.02
356.57
213.88

Total variance ( = 65.45+32.17+86.87+649.99+213.88=1048.36
The correlation matrix table shows that TM spectral bands present high correlation.

                        Table 2 the correlation matrix

TM1
TM2
TM3
TM5
TM7

TM1
1
0.9506
0.9493
0.8403
0.8862

TM2
0.9506
1
0.9659
0.8243
0.8678

TM3
0.9493
0.9659
1
0.8714
0.9172

TM5
0.8403
0.8243
0.8714
1
0.9563

TM7
0.8862
0.8678
0.9172
0.9563
1

Table 3 shows eigenvalues and eigenvectors computed for covariance matrix. The loadings between each band and each component is shown in table 4.

Table 3. eigenvalues and eigenvectors


CMP1
CMP2
CMP3
CMP4
CMP5

Eigenvalue
995.46
38.23
9.56
3.74
1.35

%var
94.96
3.65
0.91
0.36
0.13

Eigenvectors

Eigvec.1
0.228663
0.524763
-0.21799
-0.76174
-0.21112

Eigvec.2
0.157942
0.391804
-0.15951
0.117854
0.884427

Eigvec.3
0.272265
0.538658
-0.24028
0.636712
-0.41543

Eigvec.4
0.801327
-0.50366
-0.32112
-0.02145
0.024966

Eigvec.5
0.454439
0.165181
0.87532
-0.00131
0.003714

                                Table 4. Loadings


Cmp1
Cmp2
Cmp3
Cmp4
Cmp5

TM1
0.8917
0.4010
-0.083
-0.182
-0.0303

TM2
0.8786
0.4271
-0.086
0.0401
0.1814

TM3
0.9216
0.3573
-0.079
0.1320
-0.0518

TM5
0.9916
-0.122
-0.038
-0.001
0.0011

TM7
0.9804
0.0698
0.1850
-0.0001
0.0002

The first component accounts for 94.96% of the variance in the 5 spectral bands. The second component only occupies 3.65% and the third component contains 0.91% of the remaining variance. Cumulatively, these first three principal components account for 99.51% of the variance. By comparison, the variance in the last component is negligible. Thus, the five-band TM data dataset might be compressed into just three new principal component images that contain 99.51% of the variance. Figure 4 shows the five component images.

From the loadings table, the first component has high correlation with band 5 and band 7 (0.99 and 0.98, respectively). This means this component is a middle-infrared reflectance band (Jensen, 1996). But the second component has high loadings with the bands 1, 2, and 3 (0.4, 0.43, and 0.35, respectively). This component is a visible band. The third component only has high loadings in band 7 (0.19). The components 4, and 5 account for very little of the variance and contain most of the noise. But some anomalies related to significant band differences may appear in the higher-order components.

Jensen’ saying is used as a conclusion for this example. “If components 1, 2, and 3 account for most of the variance in the dataset, perhaps the original seven bands of TM data can be set aside, and the remainder of the image enhancement or classification cab be performed using just these three principal component images. This greatly reduces the amount of data to be analyzed and completely bypasses the expensive and time-consuming process of feature selection so often necessary when classifying remotely sensed data” (Jensen, 1996).

· Some applications in remote sensing
Apart from removing redundant information of highly correlated remotely sensed images, principal components transformation has also other interesting applications in remote sensing.

1. Image Enhancement

Since only three-band images can be composited to display in a color display device, multispectral dataset usually exceeds 3 bands. For example, TM has 7 bands. A few researchers (Richard and Jia, 1999, Santisteban, 1978) suggests that performing principal components transformation on the multispectral images and assigning the first three components to the red, green, and blue colour primaries could show some meaningful information. Santisteban (1978) used this method for Landsat MSS to extract geological information. In his work, the structural differences is enhanced in principal components imagery. However, the principal components composited imagery makes photointerpretation difficult for many application because each color represents a linear combination of spectral components.

 Recently, a decorrelation contrast stretch method (Gillespie, 1986, 1992, Campbell, 1996) was designed. This method is based on principal components transformation. There are three steps for this process (Gillespie, 1986, Campbell, 1996):

(a) the original bands are first transformaed to their principal components.

(b) The transformed variables are then stretched separately to equalise the variances for the principal components.

(c) The inverse of the principal component transformation is applied.

Gillespie (1986, 1992) used this technique for displaying information from multispectral thermal infrared (TIR) images. The result shows that this technique produces stretched images which exaggerate the colour saturation and enhanced display.

2. Change detection

From the 80’s the principal components transformation had been applied to change detection in remote sensing (Parra, Mouchot, and Roux, 1996).  Byrne et. al. (1980) performed unstandardized principal components transformation on two four-band Landsat scene of the same area, and different dates which were treated as a single eight-dimensional (band) data array. Their results showed that the gross differences associated with overall radiation and atmosphere changes appeared in the major component images and statistically minor changes related to local changes in land cover appeared in the higher order, the third, the fourth and fifth component images. The first component image provides a good impression of topography. The results also indicated that the high correlation that exists between dates for regions that are relatively constant and the low correlation associated with regions that are quite different on time (Parra, Mouchot, and Roux, 1996). Ingebritsen and Lyon (1985) further found that the changes with higher order components are related to changes in ‘brightness’ and ‘greenness’ in Kauth-Thomas transformation. Richards (1984) used the same method as Byrne’s to highlight regions of localized change evident associated with bushfire damage and with vegetation regrowth following fire burns but employed unsupervisied techniques to the higher order components. In this case, confusion of class signatures between dynamic and static cover types is avoided.

Fung and LeDrew (1987) examines the effect of unstandardized and standardized principal components transformation performed on total area and subset area using the same single eight-dimensional (band) dataset. They found that standardized principal components are more accurate than the non-standardized components in land cover change detection because of their better alignment along landcover changes in the multitemporal data structure. They also analyzed the effect of changing the area and they extracted four subset areas from their study area. Results from the subset area did not show clear land cover change information. It was concluded that principal components transformation is scene dependent.

3. Multitemporal dimensionality

Townshend et al. (1985) examines the underlying multitemporal dimensionality of NDVI images at continental scales by means of unstandardized principal components transformation. In their work, NDVI for eight 3-week periods for Africa and ten 3-week period for North America sampled from throughout the year extending from April 1982 to March 1983. The two multitemporal sets of NDVI images displayed remarkable similarities in terms of their first two components, the first component corresponds to the annual integrated NDVI and the second to the seasonality of the NDVI.

Eastman (1993) utilized the standardized PCA to study a series of 36 monthly AVHRR-derived NDVI images for Africa. The results showed that first component represents the characteristic NDVI regardless of the season and the second, third and fourth components related to seasonal changes in NDVI. The seventh and eighth components indicated NDVI anomalies related to significant El Nino/Southern Oscillation (ENSO) events, primarily in southern Africa. Their work illustrated standardized principal components transformation to be a remarkably comprehensive tool for the analysis of anomalies and trends in long time series data. The technique is also very effective in isolating periodic seasonal effects. 
· Conclusion

For answering the question, I give detailed mathematical description for performing principal components transformation. Using the covariance matrices given in question as a real example to show the procedure of PCT. Meanwhile, a real multi-band TM scene is used as a practical example to show how PCT works. The results show that PCT is a orthogonal linear transformation which produces uncorrelated components and preserves the total variance of original dataset. The first few components will accounts for a large part of the total variance. For the question, 10.8% information is discarded in research Group A and 33.9% information is discarded in research Group B if only the first principal component is retained by both groups. The technique can be used to reduce the number of features when it performs on the highly correlated remotely sensed images and won’t work on the images without correlation. 
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Figure 1. two-dimensional distribution of data points collected from two spectral bands, pixel vectors Xi, and mean vector M (Jensen, 1996)
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Figure 2. A new spectral vector space, Y1 is the first principal component which approximately accounts for 90% of the variance, Y2 is the second component with 5% of the variance (Jensen, 1996)
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Figure 3
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