Introductory Lectures on Using Wavelet Transform for Scale analysis
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Introduction

The wavelet transform will be introduced into the realm of remote sensing application. Wavelet theory was formalized by a group of geophysicists in the early 1980s. Today, the use of wavelet has become pervasive in mathematics, physics, digital signal/image processing, and geophysics (Xia et al., 1997). The wavelet transform leads to the concept of multi-scale analysis, where images are decomposed into structures and then analyzed at successive scales (or spatial resolutions). Just like the two dimensional discrete Fourier transform decomposes an image into a weighted sum of global cosine and sine functions, when the wavelet transform is applied, an image is decomposed into three detailed images and an approximation image. If the transform is continued, the approximation image is in turn decomposed further into three detailed images and another approximation image (Ranchin and Wald, 1993).

The respective summed weights of the wavelets are called the wavelet coefficients. Wavelet coefficients are a measure of the intensity of the local variations of the image for that individual scale. The value of a coefficient for a particular location at any scale can be understood as a characterization of the image structure at a chosen scale.

Applications of the wavelet transform in remote sensing are just in their initial stage. Only a few papers have been published on this topic. Djamdji and Bijaoui(1993) used wavelet to develop a new method of automatic registration of different sets of data acquired with the same sensors as well as different sensors at different resolutions. They (Djamdji and Bijaoui, 1995) also described a new method for the computation of a disparity map between coupled stereo images based on multi-scale wavelet transform. Lindsay and Percival (1996) applied the wavelet transform to Landsat TM data and analyze the surface scale properties of sea ice. Ranchin and Wald (1993) illustrated the use of the wavelet transform in multiresolution analysis of remotely sensed images and they use wavelet transform to successfully analyze the structure of SPOT image. The results showed that wavelet transform adapts to be used to analyze the scale properties of remote sensing image.

The lectures will spend most of time to introduce what is wavelet and how it works.

In first lecture, the concept of basis function and scaling function will be introduced because they are the key to understanding wavelet transform. And then, the averaging and differencing method (Mulcahy, 1996) will let us get a sense on how wavelet transform works. After this, the simplest wavelet basis, Haar wavelet basis, will be introduced and show how to represent one-dimensional image by means of a simple sample data. In other words, a wavelet decomposition with respect to a very special basis – Haar basis will be shown. Why wavelets? By comparing wavelet transform to Fourier transform, we can know of the general concept of wavelet transform and its merits compared to Fourier transform. 

In the second lecture, the fast algorithm of one-dimensional wavelet decomposition and wavelet reconstruction will be described in detail. The objective of the lecture is to introduce wavelet transform into remote sensing. Thus, we will further introduce two-dimensional wavelet transform and give its fast algorithm. Finally, some applications including image compression at different scale, different scale images fusion and the local variability measure of image across scale in remote sensing will be discussed.

1. Basis functions and Scaling functions

Because basis functions and scaling functions are key to understand the wavelets, In this lecture, firstly I will briefly review their concepts by using two dimension vector space as an example.

As we know, every two-dimensional vector (x, y) is a combination of the basis vectors (1, 0) and (0, 1) because x times (1, 0) is the vector (x, 0), y times (0, 1) is the vector (0, y) and the sum is (x, y). The vector (5, 3) is 5 times the first basis vector plus 3 times the second basis vector. It can also be represented by the combination of vectors (1, 1) and (1, -1). The vector (5, 3) is 4 times (1, 1) and one times (1, -1). The basis vectors of a vector space must meet the condition: each vector in the space can be expressed in one and only one way as a combination of the basis vectors (Strang, 1994).  The best basis vectors have a valuable extra property: the vectors are orthogonal to each other and their dot product is zero (Graps, 1995). For the standard basis, (1, 0) and (0, 1) is orthogonal and the dot product of (1, 0) with (0, 1) is 1*0 + 0*1 = 0. The vectors (1, 1) and (1, -1) also meet the criteria. 

For the three-dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0 1) are the basis vectors.

The above description is about the basis vectors and how are they related to the basis functions. Instead of the vector (x, y), we have a function f(x). For example, f(x) is a signal which can be constructed by adding sines and cosines using combinations of amplitudes and frequencies. In this case, the sines and cosines are the basis functions. They are also the elements of Fourier analysis. Like basis vectors, the requirement met by choices of basis vectors is this: the basis functions are orthogonal and their dot product is zero.

A scaling function can be thought of as linear combinations of dyadically dilated and translated function. For example, we have a signal over the domain from 0 to 1. And then the signal can be divided into two functions that range from 0 to ½ and ½ to 1. Furthermore, the original signal can be again divided into four functions from 0 to ¼, ¼ to ½, ½ to ¾, and ¾ to 1. And so on. Each set of representations code the original signal with a particular resolution or scale (Graps, 1995). 
2. One-dimensional wavelet transform

Unlike Fourier transform which has only a single set of basis functions: sines and cosines functions, wavelet transform has an infinite set of possible basis functions. The simplest wavelet is the Haar wavelet, which will be discussed as an example wavelet in the following section.

Consider a one-dimensional “image” f(x) with a resolution of eight pixels, having the values

11 13 16 16 17 19 17 15

This could be a row of an 8x8 pixel image. The image can be represented by the combination of haar wavelets. The wavelet transform includes several stages referred as averaging and differencing. We firstly think of the ‘image’ as four pairs of numbers and average them to get the new lower resolution image with pixel values

12 16 18 16

The averages are also called approximation ‘image’. Obviously this averaging process results in a loss of  some information. To recover the lost information, we can measure deviations from the various obtained averages. Subtracting the 4 averages (12 16 18 16) from the first pixels of the pairs (11 16 17 17) yields

-1 0 –1 1

these are called detail coefficients which store the missing information.

We have transformed the original eight pixels into a new lower resolution (four-pixel) ‘image’ and four detail coefficients. We will get the full decomposition of the original ‘image’ shown in table 1 by repeating this averaging and differencing process on the averages.

          Table 1. the decomposition procedure

11     13    16   16   17   19   17    15

12     16    18   16    -1    0    -1     1

14      17    -2   1      -1    0    -1     1

15.5   -1.5  -2   1      -1    0    -1     1

Actually, the averaging and differencing process is a way of computing wavelet transform based on Haar basis function. In table 1, the first row is the original ‘image’. The second row includes four averages and four detail coefficients. This is first level wavelet decomposition. Similarly, the first two numbers in the third row are the averages of those four averages and the second two numbers are the detail coefficients. Thus, the second level wavelet decomposition includes two averages and detail coefficients in order of increasing resolution. The first entry in the fourth row is the average of the preceding two computed averages and the second number in the fourth row is the detail coefficients. The last row is the full Haar wavelet decomposition of original ‘image’ which is the single coefficient representing the overall average of the original image, followed by the detail coefficients in order of increasing resolution. The transformation process is reversible by means of appropriate additions and subtractions of the averages and detail coefficients. It means that we can reconstruct the image to any resolution by recursively adding and substracting the detail coefficients from the lower resolution versions (Stollntiz, DeRose, and Salesin, 1995a).

In this section, we get a sense for how wavelets work. But what is Haar wavelets basis function? It will be introduced in the next section.

3. One-dimensional Haar wavelet basis functions

Before the Haar basis functions are introduced, the description of Stonitz et. al. (1995a) is used to define the vector space of the image. We can define one-dimensional image as a function y=f(x) over the half-open interval [0, 1). One-pixel image can be thought as a constant function on the whole interval [0, 1). The function vector space is denoted as (0. A two-pixel image has two constant functions over the intervals [0, ½) and [½, 1). The vector space of these functions is denoted as (1. For the four-pixel image, it has four constant functions over the intervals [0, ¼), [1/4, ½), [1/2, ¾), and [3/4, 1). The vector space is (2. Similarly, the vector space (j is for the image which has 2j constant functions over each of 2j equal subintervals defined on the interval [0, 1). Note that each one-dimensional image with 2j pixels is regarded as a vector in vector space (j. And then every vector in (j is also included in (j+1. That is,
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Mathematically this is a multiresolution analysis. (j has finest resolution. For example, the resolution of space (j is 30m, and then the (j-1 is 60m, the(j-2 is 120m and so on.

These constant functions can be thought of as linear combinations of dyadically dilated and translated basis functions of (j the vector space on [0, 1). The basis functions are scaling functions which have been described in previous section. The scaling function can be mathematically defined by a recursive equation

[image: image2.jpg]Where ((x) is the scaling function and M is the range of the summation. In wavelets, M will be referred as the order of the wavelet. 

[image: image3.jpg]Consider the Haar scaling function (shown in figure 1):
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In this case, c0=1 and c1=1, i.e., ((x)= ((2x)+ ((2x-1). Some examples of its translated and scaled versions are shown in figures 2, 3, and 4. The ck is called wavelet filter coefficient described later. Wavelet filter coefficients for the Haar, Daubechies-4, and Daubechies-6 are given in Table 1 (Edwards, 1992).

Table , filter coefficients for three named wavelet.

Wavelet
C0
C1
C2
C3
C4
C5

Haar
1
1





Daub-4







Daub-6
0.332671
0.806891
0.459877
-0.135011
-0.085441
0.035226

[image: image5.wmf])

2

(

0

)

1

,

0

[

1

)

(

î

í

ì

=

elsewhere

on

x

f

For space (j, we get a set of scaling function

Where 0 <= k <= 2j-1. These 2j functions form the basis of vector space (j.
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Thus, for each 0 <= k <= 23-1, the dilated and translated scaling function for (3 is expressed as,

Note that (03 is 1 on [0, 1/8) only, (13 is 1 on [1/8, 2/8) only, (23 is 1 on [2/8, 3/8) only, and so on.

As to the basis for (2, (02 is 1 on [0, 1/4) only, (12 is 1 on [1/4, 2/4) only, (22 is 1 on [2/4, 3/4) only, and (23 is 1 on [2/4, 3/4) only.

The original ‘image’ f(x) can be expressed as a linear combination of the basis functions in (3:

f(x) =11(03 + 13(13 + 16(23 + 16(33 + 17(43 + 19(53 + 17(63 + 15(73 ( (3,        (5)

Similarly, the various averages treated as lower-resolution versions of the original ‘image’ can be also expressed as a linear combination of the basis functions (j (j=0, 1, 2):

f1(x)= 12(02 + 16(12 + 18(42 + 16(32 ( (2,             (6)

f2(x)= 14(01 + 17(11 ( (1,         (7)

f3(x)= 15.5(00 = 15.5( ( (0,     (8)

These averages are the coefficients of these Haar scaling basis functions.
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Thus, the next step is to find a representation for the detail coefficients. Consider the standard dot product defined on (j. 

Two functions f(t) and g(t) are orthogonal if and only if their product is zero on [0, 1]. Now we can define the wavelet space wj to be the orthogonal complement of (j in (j+1. The orthogonal decomposition of (j+1 can be expressed by,

(j+1 = (j ( wj                          (10)

For our example, we have

(3 = (2 ( w2 = (1 ( w1 ( w2 = (0 ( w0 ( w1 ( w2                                                               (11)

So that the wavelet space wj containing the detail information in (j+1 that can not be represented in (j. The detail coefficients described earlier for the one-dimensional Haar transform are coefficients of the wavelet basis functions. 
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The Haar wavelet is defined by
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Where
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( (x) and ((x) has relation by the equation,

In this case, c0=1 and c1=-1, i.e., ( (x)= ((2x) - ((2x-1).
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For 0 ( k ( 22 – 1, the four functions

form a basis for w2. They are orthogonal to the corresponding functions (k2. Figure 5 shows four Haar wavelets over w2.

[image: image12.wmf])

20

(

)

(

)

(

)

(

0

1

2

0

0

1

2

x

d

x

c

x

f

j

k

N

j

k

j

k

M

k

k

M

k

N

j

N

M

c

f

å

å

å

=

-

=

=

+

=

-

-

Let’s go back to our example. We have described earlier that The original ‘image’ f(x) can be expressed as a linear combination of the basis functions in (3:

f(x) =11(03 + 13(13 + 16(23 + 16(33 + 17(43 + 19(53 + 17(63 + 15(73 ( (3,       (16)

The image f(x) can be rewritten by means of basis functions (2 and w2,

f(x)= 12(02 + 16(12 + 18(22 + 16(32 + -1(02 +  0(12 + -1(22 + 1(33                                       (17)
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This is first level wavelet decomposition of original image. The eight functions form the Haar basis for (3.

The image f(x) can be also rewritten as a sum of basis functions in (1, w1 and w2,

f(x)= 14(01 + 17(11 + -2(01 + 1(11 + -1(02 +  0(12 + -1(22 + 1(32                                    (18)

This is second level wavelet decomposition of original image. The eight functions form the another Haar basis for (3.

Finally, we’ll rewrite f(x) using the basis functions in (0, w0,w1 and w2,

f(x)= 15.5(00 – 1.5(00 + -2(01 + 1(11 + -1(02 +  0(12 + -1(22 + 1(32                                 (19)

This is last level wavelet decomposition of original image. The eight functions form the another Haar basis for (3. 

From above decompositions, we also find that detail coefficients are from the shifting and scaling operation applied to the mother wavelet ( (x). The process of shifting and scaling operation of mother wavelet is depicted in figure 6.
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Our example is simply a wavelet decomposition with respect to a very special basis – Haar basis. The haar basis is not only the one for wavelet transform. Many different basis have been developed usually with a specific purpose in mind (Graps, 1995). Generally, the wavelet transform can be expressed by,

Where N is the level of wavelet decomposition and M is the power of 2 for the length of the function.

4. Fourier transform and wavelet transform

The Fourier transform translates a function in the time domain into a function in the frequency domain (Graps, 1995). The Fourier transform breaks the function into a series of sine waves of different frequencies. The basis functions of the Fourier transform are sines and cosines. Wavelet analysis is similar to Fourier analysis in this sense that it breaks the signal into its "wavelets", scaled and shifted versions of the "mother wavelet". 
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The wavelets are used as basis functions in wavelet transform. Wavelets can be obtained by dilation a and shifts b of the mother wavelet ( ((x-b)/a). Usually for convenience i, the values for a and b, is defined as dyadic: a =2-jand b =k(2j, where k and j are integers (Grapps, 1995). 
However there are some distinct differences between Fourier transform and wavelet transform. Unlike Fourier transform which has only a single set of basis functions: sines and cosines functions, wavelet transform has an infinite set of possible basis functions. Figure 7 shows the other wavelets: Dabeuchies-6, Coiflet-3, and Symmlet-6. 

As we know, the sine wave used in Fourier transform is smooth and of infinite length. But look at the figure 7, we find the wavelet is irregular in shape and compactly supported. The compactly supported means it has zero value outside of a finite interval. For Haar wavelets, the compactly supported interval is [0, 1). Their irregular shape lends them to analyzing signals or images with discontinuity's or sharp changes, while their compactly supported nature enables temporal localization of signals’ or images’ features. When analysing signals of a non-stationary nature, we often need the information about the time and frequency domains of a signal. The sine and cosine functions are localized in frequency but not in space. Therefore, the Fourier transform, provides information about the frequency domain, however time localized information is essentially lost in the process. Small frequency changes in Fourier transform will produce changes everywhere in the time (space) domain. In contrast to the Fourier transform, the wavelet transform allows exceptional localization in both the time (space) domain via translations of the mother wavelet, and in the scale (frequency) domain via dilations. This process of translation and dilation of the mother wavelet is depicted below in Figure 2.

5. Fast Algorithm

We have described how the wavelet decomposition works. The rest of the discussion is to find an effective method for calculating the approximation coefficients (averages in our example) and detail coefficients.

It is often convenient to express above the decomposition by means of matrices. In our example, original image and wavelet decomposition of the image f(x) can be also expressed as,

f(x) =[(03 (13 (23 (33 (43 (53 (63 (73] [11 13 16 16 17 19 17 15]T                            (21)

f(x)= [(02 (12 (22 (32 (02 (12 (22 (33] [12 16 18 16 –1 0 –1 1] T                  (22)

f(x)= [(01 (11 (01 (11 (02 (12 (22 (32] [14 17 –2 1 –1 0 –1 1] T                   (23)

f(x)= [(00 (00 (01 (11 (02 (12 (22 (32] [15.5 –1.5 –2 1 –1 0 –1 1] T                         (24) 
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Thus, there must be a relationship between [( j] and [( j-1], [( j] and [( j-1]. Where [( j] is [(0j (1j (2j (3j …… (kj] denoted as ( j(x). [( j] is [(0j (1j (2j (3j …… (kj] denoted as X j(x). k=0, 1, …… 2j. It means there must exist a matrix Pj and Qj such that

The scaling functions and wavelets at level j-1 can be expressed as a linear combination of finer scaling functions at level j. 
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In fact, let’s go back to look at the equations (1), (14) of scaling functions and wavelet basis functions. Equation (25) and (26) can be expressed as,

For Haar wavelet, p0 = c0 =1, p1 = c1 =1, q0 = c0 =1, q0 = -c1 =-1. 
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Hence, matrices P3 and Q3 in V3 can be written as,
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Where c1=1 and c2=1.

The rows of Pj are shifted version of one another, as are the rows of Qj. The non-zero coefficients in both matrices are c0 =1 and c1=1. Using the two matrices, we can reconstruct approximation coefficients Aj at level j from lower resolution version approximation coefficients Aj-1 and detail coefficients Dj-1. The reconstruction equation is given by
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The reconstruction procedure is also called inverse wavelet transform. Figure 8 shows the procedure.

In our example, we can get,

[11 13 16 16 17 19 17 15] T = P3 [12 16 18 16] T + Q3 [–1 0 –1 1] T                         (34)

[12 16 18 16] T = P2 [14 17] T + Q2 [–2 1] T                                   (34)
[14 17] T = P1 [15.5] T + Q2 [–1.5] T                                                 (35)

According to the reconstruction equation, we can think about if there exist two matrices Hj and Hj for obtaining Aj-1 and Dj-1 from finer resolution Aj. The equations are given by

[image: image23.wmf])

40

(

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

)

39

(

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

1

2

1

2

1

2

1

2

3

1

2

1

2

1

2

1

3

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

c

c

c

c

c

c

c

c

H

c

c

c

c

c

c

c

c

L

The matrices do exist. They must satisfy the relation (Stollnitz, 1995)
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For Haar wavelet, the matrices L3 and H3 are given by

Where c1=1 and c2=1.

Thus, we can further get the following relation
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Once again, the finer resolution approximation Aj can be decomposed into coarser resolution approximation Aj-1 and detail coefficients D j-1 by means appropriate matrices Lj and Hj. The decomposition process is also called wavelet transform or wavelet analysis shown in figure 9. The decomposition procedure is known as pyramid algorithm. The Lj and Hj are care called analysis filter, while P and Q are called synthesis filters (Stollnitz, 1995).

The three-stage wavelet decomposition in our example is shown as follow.

[12 16 18 16] T = L3 [11 13 16 16 17 19 17 15] T                          (42)

        [–1 0 –1 1] T = H3 [11 13 16 16 17 19 17 15] T                  (43)

[14 17] T = L2 [12 16 18 16] T                                      (44)

       [–2 1] T = H2 [12 16 18 16] T                    (45)

[15.5] T = L1[14 17] T                                                (46)

      [–1.5] T = H1[14 17] T                               (47)

The wavelet decomposition equation (36) (37) are also written as,

[image: image28.jpg]
Where l and h are the row entries of matrices Lj and Hj, respectively.

Similarly, the wavelet reconstruction equation (33) is also written as,
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[image: image30.jpg]Where p and q are the column entries of matrices P and Q, respectively. Since L=1/2PT and H=1/2QT, the reconstruction equation (33) is further written as,

Generally, the key for this pyramid decomposition is to find appropriate non-zero coefficients (c0, c1, ……, ck) in the matrices H, L. Actually, these non-zero coefficients can be generated from scaling function ((x). As we know, Haar wavelet has only two non-zero coefficients (c1=1 and c2=1), while Daubechies-4 has four coefficients (shown in table ). Observing the matrices H and L and equation (49) (50), we can think the l and h as convolution filter functions. l is thought of as a low-pass filter something like a moving average of some points, while h is thought of as a high-pass filter. Those non-coefficients in matrices are called filter coefficients. For Haar wavelets, the approximation coefficients (averages) are the output of the low-pass filter which consists of the average of every two samples, and the output of the high-pass filter consists of the [image: image31.wmf]A
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difference of every two samples. l filter is consisted by (1, 1) and h is consisted by (1, -1). Therefore, the pyramid decomposition can be finished by convolution operation using low-pass filter l and high pass filter h in place of matrices operation. Note that every odd element of a sequence should be removed after the convolution is performed. This is called downsampling. For reconstruction algorithm, we can perform filtering operation on coarser resolution approximation coefficients and detail coefficients by means of low-pass filter l and high-pass filter h, respectively. Note that zero should be inserted each odd position before the filtering operation. This is upsampling. Figure 10 show the decomposition and reconstruction procedures. We still use our simple example data to show the procedure of Haar wavelet decomposition (shown in 11).
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6. Two-dimensional wavelet transform

Like Fourier transform, the theory of two-dimensional wavelet transform is a straightforward extension of the one-dimensional transform. The two-dimensional 

wavelet transform is based on a separable multiresolution approximation (Mallat, 1989, and Daubechies, 1992). In this case, the two-dimensional scale function written as

((x,y)=((x) ((y)                       (51)
where ((x) is one-dimensional scaling function. At this time, there are three wavelets:

X1(x,y)= ((x) ((y), X2(x,y)= ( (x) ( (y), X3(x,y)= ( (x) ( (y)                        (52)
[image: image33.png]Figure 12 shows one level the wavelet decomposition of an image. The filters l and h are one-dimensional filters discussed earlier. Consider one remote sensing image with size M*M at resolution 30m (in remote sensing, it means one pixel represents 30m*30m area in the ground). One-dimensional wavelet transform is firstly performed along the horizontal direction of this image and two resultant rectangular images are obtained. The pixel resolution along horizontal direction changed to 60m from 30m. The two decomposed images are further processed along the vertical direction. The pixel resolution along vertical direction also changed to 60m from 30m. Thus, we obtain four images with resolution 60m. One is a (M/2 * M/2) image representing the smoothed data at resolution 60m which is also coarser resolution approximation image. The approximation image contains the information due to the structures where scales (resolution) are greater than the current scale (resolution). The other three images are wavelet coefficients corresponding to {X1 X2 X3} the wavelet functions. There will be [image: image34.png](M/2 * M/2) coefficients in the three images. Due to the separable nature of the decomposition, the three detail coefficients images are called horizontal orientation image (h), vertical orientation image (v) and diagonal orientation image (d), respectively. The detail images show all the structures having a characteristic length between resolution 30m and resolution 60m. The decomposition is recursively applied to the outputs of the approximation image until the desired resolution level is reached. This is called multi-resolution analysis. Therefore, a multi-resolution representation provides a hierarchical framework for the image structure. At different resolution, the details of an image characterize different physical structures of the scene. At a coarser resolution, these details correspond to larger structures. Figure 13 shows one-level wavelet decomposition for a simple image. Except for the approximation image which has all positive transform values, all others detail coefficients are fluctuating around zero. The larger absolute transform values in these detail images correspond to sharper brightness changes and thus to the salient features in the image such as edges, lines, and region boundaries (Manjunath and Mitra, 1995). Sometimes the two-dimensional wavelet decomposition use two-dimensional filters combined by h and l. For example, Haar has
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f1 is used to generate approximation image, f2 is for vertical direction, f3 is for horizontal direction and f4 is for diagonal direction. 

7. Some applications in remote sensing

· Image compression

The use of a series of images in place of the use of one or very few images has become the current trend in remote sensing. Multispectral images and hyperspectral datasets containing hundreds of bands (e.g. MODIS) need huge storage. For example, a scene Thematic Mapper (TM) images need 150 Mbytes (Tintrup et. al. 1998). Often wavelet transform let us get multi-resolution information which is useful in compression. In general the wavelet compression scheme for a image works like this:

(1) To perform wavelet transform on a image until the desired resolution level is reached,

(2) Set a nonnegative threshold value T,

(3) Any detail coefficient whose magnitude is less than or equal to T will be set to zero. This leads to a relatively sparse images with proportion of zeros. In this case, we only need store the coarsest approximation image and those nonzero detail coefficients. Some images’ compression ratio using wavelet transform is up to 100:1.

Consider one-dimensional image with values (64 48 16 32 56 56 48 24), although the  values in the image is not good for explaining the effect of wavelet compression, we can use it to show the compression process. Performing one-dimension wavelet transform on it, we obtain a new dataset: (43 –3 16 10 8 –8 0 12). ‘43’ represents approximation image and the others (bold numbers) represent detail coefficients at each resolution. For T=3, the new dataset will change to (43 0 16 10 8 –8 0 12). If we store those nonzero values, the space is saved. But some information losing when we recover them and get (67 51 19 35 53 53 45 21) using inverse wavelet transform (reconstruction). This is lossy compression. 

· Remote sensing images fusion

The goal of image fusion is to create new images that are more suitable for the purposes of human visual interpretation, computer-aided object detection, and target recognition. The multiresolution wavelet transform has been applied to merge SPOT multispectral and panchromatic imagery (Garguet Duport, 1996) and Landsat TM and SPOT panchromatic imagery(Yocky, 1996). The idea of their algorithms can be described as follows:

a) The two images must be registered the same area and be interpolated or aggregated to the same resolution.

b) Choose the wavelet basis for the transform and final resolution for the multiresolution wavelet transform. The final resolution should be the same for each transform pyramid.
c) Perform the wavelet transform on both pyramid.
d) Extract the desired sensor context image from its decomposition pyramid and replace the context image totally in the other sensor’s decomposition pyramid.
e) Perform the inverse transform on the image combination.
In this lecture, we give a practical application for multi-resolution images fusion. SPOT panchromatic image (shown in figure 13) has 10-m resolution and SPOT XS images (shown in figure 14) have 20-m resolutions. These images are ErMapper tutorial dataset. The purpose of the method is to simulate 10-m images of XS and preserve the original spectral characteristics of original XS 20-m.

First, the SPOT XS and SPOT P images were geometrically corrected in order to be superimposed. This has already been done by USGS/EROS data center. Next, two steps are necessary for the wavelet merging method:

· Decomposing the SPOT P image into four images: one approximation image at 20m resolution and three details image present between the 10-m and 20-m resolution.

· Using 20-m SPOT XS1, XS2, XS3 to replace the approximation image separately and performing the inverse wavelet transform. Thus, at 10 m of resolution, simulated images are produced. The spectral information content of original XS images was conserved because only the scale structures between 10-m and 20-m resolution have been added.

The figure 15 shows the flowchart of this method. The resultant composite image is shown in figure 16.
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· Scale analysis 

A remote sensing image may show a myriad of different features such as soil, vegetation, urban, water, road, agriculture etc. This information (groups) appears in different patterns within image. The same group may have different patterns and regional content within an image. Using the wavelet transform, we can study the multi-scale properties of satellite images and construct procedures for assessing scale properties when applied to satellite data. 

When the wavelet transform is applied, the image can be decomposed into an approximation image and detail images at coarser resolution. Some information may disappear in the approximation image at coarser resolution, since the approximation image contains only structures with characteristic lengths (Ranchin et al, 1992) greater than this resolution. The detail images contain the information on brightness change and salient features in the image such as edges, lines, and region boundaries; also some differences in the patterns for the same group may appear clearly in the detail images. A concern with the detail images is - random noise will also appear in increasing fashion. Figure 17 shows SPOT image (resolution 20m) at tall grass area located in the Oklahoma, USA and its wavelet decomposition.

In addition, VAR(i,j), the sum of the squares of coefficients in the three detail images h(i, j), v(i, j), and d(i, j) can be thought of as a measure of local variability of approximation image corresponding to the three detail images. VAR(i,j) can be calculated by,

VAR(i,j)= h(i, j) 2+v(i, j) 2+ d(i, j)2                                                 (53)

It can be designed to investigate the image heterogeneity across scale. The VAR(i,j) has been used to detect singularities and edge information (Mallat and Hwang, 1992), to extract texture information (Burgiss et al, 1998, Mallat, 1992) at different locations and scales, and generally to compare local image properties as a function of scale (Hunt et al, 1992). Figure 18 shows the local variability map of SPOT image at resolution 40m.

Scale effects on image classification has been done by a few people (such as Townshend 1981). They concluded the misclassification error was influenced by the presence of spatial dependency. But no systematic model has been developed. If we think of spatial heterogeneity and variation is the main cause for classification error, the wavelet transform shows us how much the local variation are reduced for each aggregated level. A similar problem arises if both high and low-resolution sensors are used to change detection and monitor an environmental parameter such as the NDVI or biomass. That is to say, What are the scale effects on change detection? How to change the NDVI or biomass information with the scale? The wavelet transform is an efficient approach for such studies.
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Figure 6. the process of translation and dilation of the mother wavelet
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Figure 7. three different wavelets (Graps, 1995)
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Figure 8. wavelet reconstruction (inverse wavelet transform) (Edwards, 1992)
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Figure 9. wavelet trnasform (Edwards, 1992)
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Figure 5.  Haar wavelet functions: (a) (02 (x), (b) (12 (x), (c) (22 (x) and (d) (32(x) (Edwards, 1992)
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Figure 10 (Mallat, 1989)
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Figure 13. SPOT XS1,2,3 composite image (20m resolution)
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Figure 14. SPOT Panchromatic image (10m resolution)
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Figure 13. wavelet decomposition
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Figure 17.  2-level wavelet decomposition of SPOT image
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Figure 18. local variability map at 40m



Figure 15. Diagram of image fusion using wavelet transform



P+XS fusion using wavelet









SPOT XS3 simulated

at 10m





SPOT XS2 simulated

at 10m





SPOT XS1 simulated 

at 10m



Inverse Wavelet Transform





SPOT XS3 at 20m





SPOT XS2 at 20m





SPOT XS1 at 20m





Diagonal details





Vertical details





Horizontal details





SPOT P at 20 m



Wavelet Transform





SPOT P at 10m
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Figure 16. The color composite image made by using wavelet fusion of 

the XS bands 3,2,1 as red, green, blue
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Figure 11. Wavelet decomposition (the resolution will be reduced after each level decomposition)
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